C.U.SHAH UNIVERSITY Winter Examination-2015

Subject N	Name:	Linear	A	lgebra
-----------	-------	--------	---	--------

Subject Code: 5SC01MTC1			Branch: M.Sc. (Mathematics)	
Semester:1	Date:30/11/2015	Time:10:30 To 1:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions. (07)a) Define: Linearly independent vectors. (01)b) Intersection of two subspaces is subspace but union of two subspaces need not be (01)subspace. Determine whether statement is true or false. c) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ define by T(x, y) = (x, x + 3y, 2y). Check whether T is linear. (01)**d**) Are $(2, -1, \frac{3}{2})$ and $(\frac{-1}{7}, \frac{1}{14}, \frac{-3}{28})$ linearly dependent ? Justify your answer. (02)e) State Cauchy – Schwarz inequality. (02)Q-2 **Attempt all questions** (14)a) Define vector space. Show that R_n is vector space. (06)**b**) Define subspace of vector space. Let V be vector space and $W \subset V$ then show that (06)W is subspace of V if and only if $\alpha u + \beta v \in W$ for all $\alpha, \beta \in R$ and $u, v \in W$. c) What is span of $\{1, x, x^2\}$? (02)OR Attempt all questions (14)Q-2

a) For linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(x,y) = (x, x + y, y). Verify (06) rank-nullity theorem.

Page 1 || 3

b) For linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined as (06)T(a, b, c) = (2a + b - c, 3a - 2b + 4c) and $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\} \& B_2 = \{(1,3), (1,4)\}$ are basis of \mathbb{R}^3 and \mathbb{R}^2 respectively, Then find matrix which is associate with linear transformation T. c) What is orthonormal basis of vector space? (02)Q-3 **Attempt all questions** (14)a) Using gram-Schmidt orthogonalization process find orthogonal basis for M_{22} (07) with B = $\left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\}.$ **b**) If V is finite-dimensional and W is a subspace of V then prove that W is finite (07)dimensional, dim $W \leq \dim V$ and dim $V/W = \dim V - \dim W$. OR Q-3 **Attempt all questions** (14) a) State and prove Reisz-Reprasentation theorem. (07)**b**) State and prove rank -nullity theorem. (07)**SECTION - II** Q-4 Attempt the Following questions. (07)Define linear transformation. a) (01) **b**) Prove that if two rows of *A* are equal then det A = 0. (02)Define matrix associated with linear transformation. c) (02)d) Define Jordan block belonging to character root λ . (02)Q-5 Attempt all questions (14)a) Define trace of a matrix. (07)For $A, B \in F_n$ and $\lambda \in F$, prove the following (i) $tr(\lambda A) = \lambda tr(A)$. (ii)tr(A+B) = tr(A) + tr(B).(iii) $tr(AB) = tr(A) \cdot tr(B)$.

Page 2 || 3

b) Define nilpotent. Let V be a finite dimensional vector space and $T \in A(V)$ be (07) nilpotent with index n_1 . Also V_1 be invariant under T. If $u \in V_1$, is such that $T^{n_1}(u) = 0$, $0 < k \le n_1$, then prove that $T^k(u_0) = u$ for some $u_0 \in V_1$.

OR

Attempt all questions(14)a) Let V and W be finite dimensional vector space over F then prove that the set(07)Hom $(V,W) = \{T: V \rightarrow W; Tishomomorphism\}$ is also finite dimensionalvector space and dim $Hom(V, W) = \dim V \cdot \dim W$.

b) Let V be a finite dimensional vector space over F and $T \in A(V)$ be such that all (07) characteristic roots are in F then prove that there exists a basis of V in which the matrix is triangular.

Q-6 Attempt all questions

Q-5

a) If V be a finite dimensional vector space. Let T: V → V be a linear map. Then
(07) prove that following are equivalent.
(i) T is isomorphism.
(ii) kerT = {0}
(iii) lm(T) = V.

(14)

b) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. (07) Show that the invariants of T are unique.

OR

- Q-6 Attempt all Questions
 - a) Let V be a finite dimensional vector space, $T \in A(V)$ and W be a subspace on V (07) invariant under T. Define the linear transformation \overline{T} of T on $\overline{V} = V/_W$. Suppose p(x) and $p_1(x)$ are minimal polynomial for T and \overline{T} respectively then $\frac{p_1(x)}{p(x)}$.
 - b) Let V be a finite dimensional vector space over $T \in A(V)$ has all its (07) characteristic roots in F then prove that T satisfies a polynomial of degree n over F.

Page 3 || 3